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energies as crucial factors for the magnetic structures in 
Ho and Er 

J Sjostrom 
Department ofTheoretical Physia. Royal Institute ofTechnology, S-10044 Stockholm, 
Sweden 

Received 14 October 1991 

AbstracLTheexchange energiesfor different magnetic phasesin the heavy rare earthshave 
been studied by means of an anisotropic band model. Calculations on Ho and Er show that 
the model predicts the correct magnetic ground states. The results show that the anisotropic 
rather than the isotropic exchange energy is crucial for the stability of competing magnetic 
structures. Particularly, in Er the strong spin-orbit coupling gives rise to an antisymmetfic 
contribution to the anisotropic exchange energy. This antisymmetric contribution is a pre- 
requisite for the conical configuration that takes place at low temperatures. 

1. Introduction 

The rare earths (RE) have, owing to their many remarkable magnetic properties, been 
the subject of many investigations; see Coqblin [l]  for a survey. 

Characteristic for the RE is the fact that the direction (helix) and the magnitude 
(modulation or spin-density wave (SDW)) of the magnetic moments may vary for crys- 
tallographically and chemically equivalent atoms. The variation can be described by one 
or several propagation vectors q. which can be commensurate or incommensurate with 
the period of the crystal. This means that superpositionsofdifferent spin configurations, 
for example a combination of a helix and ferromagnet constitute a conical structure in 
erbium and holmium, may obstruct the interpretation of the magnetic structure. In 
figure 1 we give a schematic survey of the magnetic phases and transition temperatures 
for heavy RE. 

The physical reason for this complex magnetic behaviour can be traced back to the 
anisotropic exchange interaction [2-4] and the shape of the Fermi surface [5]. The latter 
property is called nesting, which means that the susceptibility has a peak for the spin 
propagation vector of the magnetic structure. 

Traditionally, properties related to the electronic structure of the RE have been 
described by two contrasting methods: the band model and the crystal-field model. A 
band model with itinerant s, p and d electrons and the f electrons frozen in the core is 
used to describe the de Haas-van Alphen measurements. the transport properties, the 
crystal structure, etc. [l, 61. In the crystal-field model, the f electrons play a central role, 
but it  completely neglects the valence s, p and d electrons. That approach describes for 
example the magnetic moments and the LScoupling correctly [I, 61. However, neither 
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Figure 1. Magnetic structures. moments p and transition temperatures for the heavy rare- 
earth elements (survey based on [I]) .  

model on its own can explain all the electronic properties. In fact, these models can be 
considered as two opposite and idealized special cases of the correct exchange inter- 
action, which is of the so-called indirect type, i.e. an interaction between itinerant 
electrons and the magnetic moments from the localized f electrons [3]. 

A recently performed band calculation of Gd by Temmerman and Sterne [7] shows, 
however, that it is possible to include the f electrons with the traditional s, p and d 
valence electrons and in this way obtain reasonably accurate results for, e.g., the 
magnetic moments and the Fermi surface. This means that highly correlated f-electron 
systems can be based on a model where the exchange and correlation are derived from 
theelectron-gasapproximation. Calculationshy Harmon [8] and Brooksetal[9] indicate 
that thebandapproach holdsforthe REsystemsingeneral.Thus,itseemsunambiguously 
that the correlated electron-gas approximation is relevant for the RE. 

In an earlier work the author successfully applied a band model for the g-dependent 
susceptibility calculations on 3d systems with complex magnetic structures [lo]. The 
purpose of this paper is to apply the same approach as in [lo] and in this way study how 
different contributions to the exchange and band-structure properties iduence the 
stability of competing magnetic structures in heavy RE. In section 5 we present results 
from numerical calculations for Ho and Er. 

Finally we note that the spin susceptibility approach has recently been given a 
rigorous theoretical base for the RE [7-9,11-13]. From a more pragmatic point of view, 
one knows,eversince thefirstpaperbyLiuetalin1971 [5](forcalculationsof,e.g.,the 
spin propagation vector in erbium), that this approach is relevant for the RE. 
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2. Basic theory 

In athe calculation of different contributions to the exchange energy we will use the 
anisotropic band model according to Sjostrom [14 ] .  It is based upon the approximation 
that the exchange interaction and spin-orbit interactionscan be treated as perturbations 
of a non-magnetic Hamiltonian. This leads to a Hamiltonian that is not diagonal with 
respect to the spin-orbit term. Diagonalization results in an exchange energy and 
consequently also a susceptibility that depends on the orbital angular momentum vector, 
i.e. it is anisotropic. By assuming that the exchange can be described by a linear 
response theory function, and applying second-order perturbation theory, the following 
expression for the magnetic energy is obtained in [14]: 

G.W i . j  
&mag(q) = 2 2 v,,GVefx.WSG.i(q)X-'(q))GC'.i jSE'j(q). (1) 

Here qis the spin propagation wavevector, V,,, and SGi(q) are the Fourier components 
of the local exchange potential and the spin density. The latter is given by 

sG. i (q)  = P/V) [SW exp{i[qi . (R, + p )  + p .  GI} dr. ( 2 )  

In the exchange field approximations ( 1 )  has the more handy form [lo] 

Emag(q) = 2 2 C,~(TXSE.i(q))x~.il(~)(S,,.j(~)). (3) 
C.G' i , j  

Here the q-independent constant C,,(T) depends on Vex,, and on the magnetic tran- 
sition temperature. Further, (&(q)) is the mean value of the spins (defined in [lo]) and 
the summations are over reciprocal lattice vectors G, G' and space coordinate directions 
( C j = x , y , z ) .  

The susceptibility tensor in ( 3 )  consists of two different contributions, one isotropic 
diagonal kIs) term from the exchange interaction and one anisotropic. The latter thus 
has non-diagonal contributions, which arise from the exchange interaction and also 
indirectly from the spin-orbit interaction via the unitary diagonalization matrix Usgiven 
in [14]. Thus we have 

Here 

x(q)!& = 2 2 FG(k, k', k - q, k' + q)F,(k, k', k - q, k' + q)* 

x ( q ) ~ ~ . ~  = xk)!&W,j) + x(q)%..i,. (4) 

k' k 
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Here FG(k, k ' ,  k - q ,  k' + q) is the Fourier transform of the wavefunction, andf(x) is 
the Fermi distribution function, i.e. f ( x )  = 1 for x > 0 and 0 for x < 0 when T = 0. 
Further - E ~ .  In general the states k ,  k ' ,  
k - q and k' + q belong to different bands. For brevity, however, the band indices have 
been suppressed in the expressions above. In (6),  the summation is over all spin states 
that conserve the initial spins (s + s' = A" + s"'). 

The non-diagonal matrix elements of the susceptibility tensor (or its inverse) can 
be separated into a symmetric (x:# = &, rrp = x , y ,  z) and an antisymmetric term 
(,y$ = This means that the spin-dependent factors in the anisotropic energy 
expression (1) can also be separated into a symmetric and an antisymmetric term as 

is the Fermi energy, AC = + c ~ , ~  - 

follows [lo]: 

"e@ = (x;+ms,s;c? + Sqc?S&) + (x;;)*Ys,,s;p - spps:d (8) 
(For brevity q is here an index and C and G' are omitted. 

In order to perform calculations of the anisotropic energy we need the explicit 
expressions of ( x . ~ ) ~  and (,yep)AS and they are given in appendix 1. We need also the 
Fourier transform for a general spin density 

where p i s  a distance vector in the unit cell n. 

spins. i.e. if 
We note that relation (9) holds in the interesting special case of perfectly localized 

S(P) = sa@). (10) 

SG = sjv (11) 

From (2 )  we get the corresponding Fourier components 

which inserted in (9) gives the whole set of localized spins in the lattice 

0) = s 2 d(R,a + P ) .  (12) 
n 

From the current magnetic structure we consider the following form of (9): 

+ b,w sin(q, r r + @dl exp{i[q, . (R, + P )  + P Cl}. (13) 
Here H stands for a helix, a, and b, are constants and U, U, ware normalized vectors, 
directed in such a way that U and U are orthogonal to each other. Further in (13) O(q) = 
r -  q + @o (q0 is the reference phase angle). 
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The expression (13) covers e.g. the following magnetic structures: 

(i) Helix, = 1 and b,  = 0, q. # 0. 
(ii) SDW, a. = 0 and Xmb, = 1, qm # 0. 
(iii) Cone, a, # 0, b, # 0 ,  &,(an + b,) = 1; U, o and w orthogonal; qn # 0 and 

(iv) Modulations and bunching, a,, # 0, b, # 0; w is parallel to the UD plane; q. # 0 
q, = 0. 

and qm # 0. 

3. General expressions for the symmetric and antisymmetric spin susceptibility in HCP 

rare earths 

For the appropriate systems we consider the following different magnetic structures: 

(i) Ferromagnetism in the ab plane or along the c axis. 
(ii) Helix structure in the ab plane. 
(iii) SDW along the c axis (or sinusoidal modulation). 
(iv) Cone structure, i.e. superposition of (i) (with L as symmetry axis) and (ii). 
(v) HSDW (helical SDW), i.e. asuperposition of (ii) and (iii). 

In the magnetic phase diagrams for the heavy RE, two or three of the spin arrange- 
ments above take place (depicted in figure 1). The transition between the different 
phases has been reproduced in mean-field theory by the ad hoc introduction of an 
anisotropic exchange field [4]. This indicates that the symmetric (SEI) and antisymmetric 
exchange interactions (AEI), which are physical bases for the anisotropic mean field, can 
be crucial factors for the stability of the magnetic structure. 

In order to test this hypothesis we use the general expressions for the SEI and the AEI 
given in appendix 1 and the energy expression (3). We utilize also that the dispersion 
relation of L,is simpler than for transition metals since, as a consequence of the localized 
interaction, the angular momenta obey Hund's rule for LS coupling. For the heavy 
elements this means that L and S are parallel andJ = L + S. 

In appendix 2, the following expressions are obtained. 

(i) Ferromagnetism 

SEkC(O) = X & ~ , ~ , ( O )  = 2AToT(O) (144 

A E I w  (0) = 0 (14b) 
(i = x ,  y or z) where 

The introduction of a q-dependent part of the symmetric SEl(q) and antisymmetric 
aEl(q) exchange energy is motivated in appendix 2. 

(ii) Helimagnetism 
SEIGG*(Qh) = AmT(qh)[5 - 3 COS2(qh .R)] cos(qh .R) (150) 

AEIGG*(qh) = 0. (156) 
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(iii) Spin-density wave 
sEIm.(qs) = 2AmT(q,) sin(q, -R + a) (164 

AEIm. ( Q s )  = 0. (166) 
(iv) Cone structure 

S E k o ( O 3  9 c )  = z(Pz/P)'rzEC"T(o) + (P,/P)2A%T(4c) 
X [5  C COS^(^, .R)]cos(g, .R) (174 

(17b) 2 . 4 3  
~ ~ 1 ~ 0 ,  qc) = ~ ( P J P )  &&J s i n k  * R) 
where 

A&*(qs.qh) = Amv,i-~-ii(k~k' ,k - q,k' + 4)  + Aw.-ti-ii(k,k',k - q,k' + q).  

(v) HSDW, i.e. a superposition of (ii) and (iii) 
2 TOT 2 TOT 

SEICG'(qs, qh) = 2(Pz/P) b' (4s) * R, + @ x y / P )  b' (qh)  

x [5 - 3 cos2(qh . R)] cos(q, . R) (184  

AEkG'(4h) = 4(f'r/P)*'%(qh) sin(qh (186) 
By determining the boundaryconditionsforexpressions(l5)-(18), we find that they are 
consistent with (14) in the time o f q -  0. 

4. Technical details in the calculations 

The calculation procedure of the symmetric and antisymmetric contributions to the 
energy involvescalculationsof: (i) theenergy bands, (ii) thesusceptibilities(from (Al. l )  
and (A1.2)). (iii) the SEI and AEI according to the formulae in the previous section and 
(iv) the energies from (A2.2a) and (A2.26). 

(i) The band-structure calculations were performed using a self-consistent linear 
muffin-tin orbital (LMTO) method. Relativistic effects are included except for the spin- 
orbit interaction of the band electrons. This means that band splitting effects from 
the spin-spin and the spin-orbit interactions are taken into consideration only by 
perturbation calculations, i.e. not self-consistently. For the generation of the potential, 
the local-density approximation with Gunnarsson-Lundqvist parametrization was 
adopted. The calculations were made for the equilibrium hexagonal structure and with 
3672 k-points in the irreducible wedge of the Brillouin zone. 

(ii) The following method and approximations have been used. We have considered 
only energy bands that cross the Fermi level in such a way that so-called nesting effects 
in principle are possible. Among these bands the different combinations of two-band 
systems have been selected. Inter- as well as intra-band interactions have been taken 
into account, while excitations involving more than two bands have been neglected. The 
summations over k and k' are performed over the same &-mesh of the irreducible part 
of the Brillouin zone as for the band calculation. The q-vectors of the helix have 
been set equal to that k-point which deviates least from the experimental one, i.e. no 
interpolation between the k-points was performed. 

Step (iii) above was performed by using experimental results (given in [I]  and 
the references in [I]) of the magnetic structures (mainly q-vectors). For cases where 
hypothetical magneticstructures are investigated, we use values for qvectors, magnetic 
moments, etc., corresponding to the experimental values. 
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Table 1.The variouscontributions to thecalculated exchange energy(meV) forthe magnetic 
structuresinsection3. Abbreviations: SAE = symmetricanisotropicexchangeenergy. AAE = 
antisymmetric anisotropic exchange energy. 4f = total anisotropic exchange energy, IE = 
isotropic exchange energy and AE =total cnergy difference relative to the experimental 
groundstate. The numerical inaccuracy forthe energydifferences isestimated to be 2 5  meV 
between ferromagnetism and the other structures, < 2 1 between the cone and the HSDW or 
the helix (lower because the susceptibilities are calculated for the same q-vector). The 
absolute values have much larger inaccuracy. 

SAE (mev) AAE (meV) AE (meV) IE (meV) A& (meV) 

Ho Fermm. -35 
Helix -43.2 
SDW -31 
Cone 42.8 
HSDW -42.1 

Er Ferrom. -34 
Helix -47 
SDW -28 
Cone -30 
HSDW -24' 

0 -35 
0 -43.2 
0 -31 

-1.3 -44.1 
-1.3 43.4 

0 -34 
0 -47 
0 - 28 

-19 - 49 
-19 -43 

-385 9 
-392 0.9 
-392 13 
- 392 0 
-392 0.7 

-374 19 
-378 2 
-378 21 
-378 0 
-378 6 

Step (iv) involves the Fourier transforms of the electrostatic potential and the spins. 

The crucial point is step (ii), i.e. the self-energy represented by the A(qh)cc.,ufff in 
(Al . l )  and (A1.2). because they involve energy differences in the denominators, which 
can be very small. We have approached this problem by using a much finer mesh in the 
k-space than for ordinary band calculations. In this way we obtain high convergence for 
the Fermi level and the energy bands. It is important to note that the uncertainty in step 
(U) primarily deteriorates the absolute values but also as a secondary effect the energy 
differences between ferromagnetism and the non-collinear structures but not the energy 
differences between structures corresponding to the same q-vector and matrix elements. 
Thenumerical accuracy oftheenergy differencesis, asaconsequenceof thiscancellation 
of the systematic errors of the subtraction in (Al.1) and (A1.2), high (table 1). Of 
course, we have not taken intoconsideration the errors from the approximation involved 
in the method (since they are impossible to estimate). 

5. Computational study on Ho and Er 

In this section we apply the computational method described in section 4 on Er and Ho. 
We utilize the following experimental data. Between TN = 88 K and T, = 20 K the 

magnetic structure of Ho is a basal plane helix, which transfers to a cone structure [E] 
(type (iv)). Er also has a cone structure in the ground state but the semi-cone angle is 
less than for Ho (30" and 80.5") [l, 15,161. The different cone angles are aconsequence 
of the fact that the b axis is the easy magnetization direction in Ho while in erbium the 
easy axis is the c axis. The helix in Ho is distorted by the anisotropy in such a way that 
the moment is bunched around the easy axis [17]. The high-temperature structure in Er 
is a SDW, which propagates along the hexagonal c axis. The intermediate phase is a 
superposition of a helix and a sDW, i.e. structure (v) above. 
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Figurr2.Schematicillustrationoftherffultsfromthecomputationalstudiesofthesymmetric 
(SAE) and the antisymmetric (AAE) contributions to the anisotropic exchange energy in the 
different magnetic phases in MnP, FeP, CrAs. MnAs [IO]. Ho and Er. For the transitions 
metals, h stands for helix and 1 lor ferromagnetism. For No and Er the element numbers 
correspond to a certain magnetic structure according to the list in section 4. The distance 
between two scale marks corresponds to 10 meV. 

The result from the calculations is presented in table 1. It turns out that both Ho and 
Er get their lowest energy for the cone structure. This result in Er is a consequence of 
the fact that the cone structure, due to strong spin-orbit coupling, corresponds to a 
rather large AEI. The helical spin configuration has lower SEI than the cone structure but 
for a symmetry reason the AEI vanishes. It is interesting to note that the experimental 
value of the q-vector in Ho and Er is approximately coincident with the one for the 
lowest possible SEI for a helix (see appendix 2). 

In Ho the AEI is small but nevertheless it tipped the scales in favour of the cone 
structure. For Er the results obtained are significant within the numerical inaccuracy. 
This is probably the case even for Ho since the dominating element is calculated for the 
same q-vector. 

Nesting effects (section 1) occur in both Er and Ho (table l), but in this calculation 
isotropic nesting is obviously not the determining factor. 

The magnitudes of the total anisotropic energy are about 13% in Er and 11 % in Ho 
at the total exchange energy. 

In figure 2, the SEI and AEI for Ho and Er are compared with the same quantities for 
MnP, Fer, CrAs and MnAs in [lo]. 

6. Discussion 

We have shown in figure 2 that the AEI and SEI for a number of magnetic systems vary 
with the magnetic structure. Since the isotropic exchange interaction is not directionally 
dependent, it is clear that the stability of competing magnetic structures is governed not 
only by the magnitude of the anisotropy, but also to a high degree by the ratio between 
its symmetric and antisymmetric contributions. 

In fact there are two different problems concerning the stability of complex mangetic 
structures: (i) what is the value of q, ,  q2, . . ., qN; (ii) which spatial spin distribution 
corresponds to the lowest energy? 

Contrary to the first problem, the second has not attracted so much attention. This 
work indicates that problem (ii) can be approached by taking the SEI and AEI into 
consideration. This can also be done experimentally, as Kataoka has noticed 1181, 
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by study the dynamical spin-wave spectra. The spin distribution can be measured by 
neutron diffraction, Mossbauer spectroscopy or nuclear magnetic resonance (NMR). By 
combining these methods, the experimental resolution can be improved. A way to 
proceed on the theoretical side is to extend this computational work, e.g. by including 
the spin-orbit coupling for the band electrons and particularly by interpolation of the 
energy bands in k-space for the x(q)  calculation. 

Appendix 1. Explicit expressions for the anisotropic susceptibility tensor 

In [14], The non-diagonalsusceptibility in equation (4) isseparated into an antisymmetric 
(AS) and a symmetric term (s) in the following way: 

X%.;j(q! = ~ ( & j ) [  (ACC'.I-I-II f Acc ' , - , I - I I ) (L(~-~~" /L~-~ 4- L ( k ) n / L k )  
bands I.$' 

r,? 

and 

+ L g L k * i L ( k - q ) j L ( k ' + q ) i  - @ - q  ' L k ) ( L k ' + q  .Lk')6('  ' 

L k L k ' L k - q L k ' + q  
"')). (A1.2) 

Here, i, j ,  n are space coordinate indices x ,  y or z ,  I\oc.,ss~rsw is given in expression (7), 
and A(i ,  j )  is the antisymmetric tensor (A(i, j )  = 1, A ( j ,  i) = -1 andA(i, i) = 0). Note 
also that then coordinate in (A1.2) is directed perpendicular to the spins. It is therefore 
obvious that the AEI vanishes if then component of Lk = 0. 

Appendix 2. Derivation of the symmetric and antisymmetric exchange energy in heavy 
rare earths 

By inserting the susceptibility, given by expressions (Al.l)  and (A1.2) for the magnetic 
structures labelled (it(v) in section 3, in the energy expression (3) we obtain the 
symmetric and antisymmetric contributions to the exchange energy. Besides the spin 
directions we also use that the angular momenta are parallel to the spins. Furthermore 
both S and L can as a good approximation be considered as localized. 
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For the ferromagnetic structure (i) only the direction that coincides with the spins 
survives: 

S E I ~ . ( O )  = X&~.,(O) = 2AP(O) 

A E I ~ . ( O )  = 0 

(i = x ,  y or z) where 

(A2. la) 

(A2. lb) 

A Z ( 0 )  = AGG~.u~r-r(k, k',  k - q. k' + q )  for q = 0. 
d.S S." 

The abbreviations SEl(q) and AEl(q) stand for the symmetric and antisymmetric terms 
of q-dependent part of the exchange energy [IO], i.e. 

EsEI(d = SEIw(4)  Cw(T)(sc)(%,) (A2.2a) 

E A E ~  (Q)  = 2 A E I w  ('2) ccc (T)dS,)(sz,). (A2.26) 

For a magnetic helix in the xy plane, i.e. structure (ii), we have four different 
contributions to SEI: 

SEICO.(qh) = [ X & . n ( q )  f X&'.yy(Q) (A2.3) 

The last term on the right-hand side of (A2.3) comes from the scalar product between 
the reference spin and the first-nearest-neighbour (INN) (which of course rotates the 
angle qh .  R). This means that we have neglected terms of higher order than the second 
in the Fourier series expansions of all characters in (A2.k) and (A2.2b). 

If we choose the x direction as the reference spin direction, the y y  component 
vanishes. Since the susceptibility is symmetric we simply add the xy and yx components. 
This yields. 

(A2.4) 

By using (A2.1) and (A2.3) we get for the I N N  and Lk parallel with a magnetic moment 

G.G' 

C.G' 

X & ' . q ( q )  + X&.yx(P)I COS(% .R). 

selCC'(qh) = k&' .xx (q )  + 2 6 C ' . ~ y ( d l  cos(qh 

S E I w  (qh) = G0T(qh)[3 -COS2 (qh *R)]COS(qh 'R) + 21\gT(qh)SiI12 ( q h  *R)cos(qh .R) 
= AiP(qh)[3 - COS2(qh .R) + 2 S h 2 ( q h  *R)] COS(qh R) 

= Ag?(qh)[5 - 3 ms2(qh .R)] cos(qh 'R). (A2.5~) 

This expression assumes it maximum for cos2(qh . R) = 5/9,  which corresponds to 
approximately 42", i.e. close to experimental values for Ho and Er  [15,16]! 

The antisymmetric contribution vanishes for the helix since L, = 0, 

A E I G G * ( ~ ~ )  = 0. (A2.5 b )  

For the SDW (iii) all the spins are parallel and sinusoidal or modulated, so we get 

SEIw(qs) = 2agT(q,) sin[(q, .R) + a] (A2.h) 

AEIGG*(4J = 0. (A2.6b) 

The cone structure is somewhat more complicated because it is a superposition of 
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the structures (i) and ( i i ) .  Moreover, the AEI term does not vanish since Lb # 0. We 
write thesymmetric term as 

S E I ~ ~ . ( Q . )  = S E I ~ ~ . ( O )  sinz a + sEiw.(qJ cos (Y. (A2.7) 

Here a is the semi-cone angle. Inserting (A2.1~) and (A2.5~) in (A2.7) and relating a 
to the magnetic moment wesimply obtain the expression (170) of SEI(Q,) given in section 
3. 

In order to calculate the antisymmetric term we used the following approximations. 
The (small) xz and zy components are neglected. The second product on the right-hand 
side of (Al.2) is put equal to zero, since it consists of terms that cancel to a large extent. 
We must also take into consideration that according to (8) the spins of the AEI term can 
be written as a vector product and consequently a sine term will appear. Within the 
framework of these approximations, it is straightforward to get expression (176). 

The HSDW is a superposition of a helix and and SDW. We obtain the AEI and the SEI 
in the same way as for the cone structure (expressions (180) and (186)). 
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